

Constellation-X Spectroscopy X-Ray Telescope (SXT) Overview - Status and Plans

R. Petre
NASA/ GSFC

SXT Presentations

Status and Plans	R. Petre	30 min	
Large Mandrels / MSFC suport	S. O'Dell	10 min	
Reflector Fabrication	W. Zhang	15 min	
Metrology	D. Content	10 min	
OAP	J. Stewart / J. Hair	10 min	
OAP Metrology	S. Owens	10 min	

Constellation-X SXT Mirror Parameters

Collecting area per mirror 7,500 cm² @ 1 keV

Mass per mirror <720 kg

Angular resolution (half power diameter) 10" (15" for system) 5" system goal

Diameter 1.6 m

Focal Length 10 m

f/number 6

Number of modules 18

Reflector arc 60°, 30°

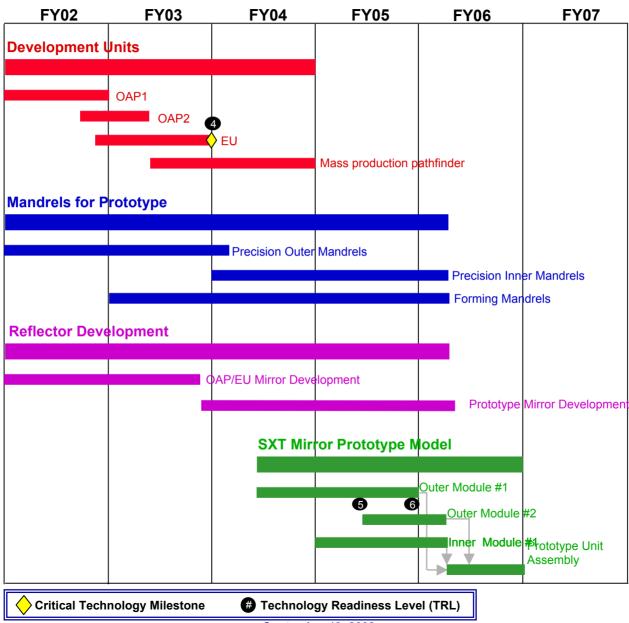
Largest reflector surface area 0.16 m²

Substrate material formed glass

Substrate density (g cm⁻³) 2.4

Reflector thickness 0.4 mm

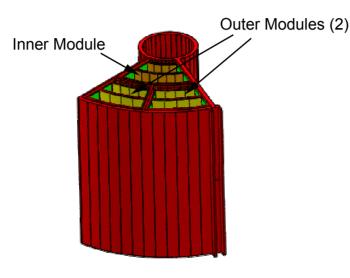
\Reflector length 20-30 cm


Number of reflector pairs 230-170

RMS microroughness 0.4 nm

Reflector material gold

SXT Mirror Technology Roadmap


Constellation-x FST September 19, 2002 SXT-4

SXT Development Approach

Engineering Unit

Prototype Unit

Single inner module with

- 0.5 m dia. reflector pair (replicated from Zeiss precision mandrel)
- Parabolic (P) and Hyperbolic (H) submodules
- Mass alignment scheme demonstrated (e.g. Si microstructures).

Flight Scale Assembly of

- 3 modules (2 outer and 1 inner)
- Largest diameter same as for flight -1.6 m
- Each module has 3 to 9 reflector pairs
- Demonstrates module to module alignment

Flight Unit
Reflectors

(2)

Housing

Full flight Assembly

- 1.6 m outer diameter
- 20-30 cm segment length
- 18 Small Modules
- 170 to 230 reflector diameters

Constellation

	Optical Assemb	oly Pathfinder	Engineering Unit	Prototype Pathfinder	Prototype		
Configuration	PH	P	PH	PH	P	PH	
Module Type	Inner	Inner	Inner	Inner	Outer	Inner	Outer & Inner
Housing Material	Aluminum	Titanium	Titanium	Composite	Composite	Composite	Composite
Focal Length	8.5m	8.5m	8.5m	8.5m	10.0m	10.0m	10.0m
Optic Length (P&H)	2 x 20 cm	2 x 20 cm	2 x 20 cm	2 x 20 cm	2 x 50 cm (TBR)	2 x 50 cm (TBR)	2 x 50 cm (TBR)
Nominal Optic Diameter(s)	50 cm	50 cm±	50 cm±	50 cm±	160 cm± 120 cm± 100 cm±	90 cm± (TBR) 70 cm± (TBR) 50 cm± (TBR)	160 cm± 40 cm± 120 cm± 70 cm± 100 cm± 50 cm±
Goals	Align 1 optical surface pair (P&H) Evaluate optic alignment techniques, optics assembly design & process, & optics metrology	Align 1 optical surface pair Evaluate gravity sag Evaluate mirror bonding	 Align up to 3 optical surface pairs to achieve<10arcsec Gravity sag Environmental and X- ray test 	 Align 3 optical surface pairs Evaluate composite housing Evaluate tooling and alignment techniques for mass production X-ray test 	Flight-like configuration outer module Largest optical surfaces Environmental and X-ray test	Flight-like configuration inner module Environmental (TBR) and X-ray test	Demonstrate module to module alignment Environmental and X-ray test
Timeframe	Q4 of FY02	Q2 of FY03	Q1 of FY04	Q4 of FY04	Q4 of FY05	Q2 of FY06	Q4 of FY06

Major Accomplishments

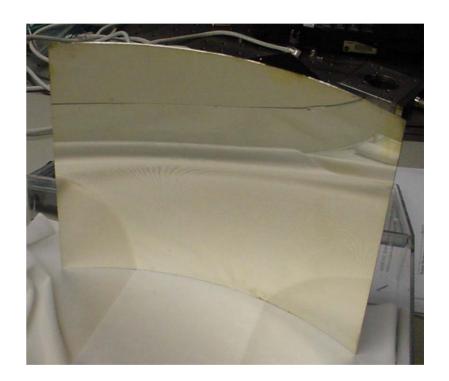
- 1.6 m x 1.2 m segment mandrel delivered by Zeiss.
 - largest mandrel needed for SXT
 - 1.2 and 1.0 m diameter mandrels being fabricated.
 - support infrastructure needs to be developed.
- Have produced 20 cm diameter substrates with figure required for SXT.
 - currently scaling process to 50 cm.
 - have demonstrated ability to form substrates with axial and azimuthal curvature.
- Infrastructure for fabricating and measuring 50 cm diameter reflectors complete.
 - includes furnace, forming & replication mandrels, spray booth, replication station, cutting fixture, interferometer for profile measurement.
- Approach for reflector alignment in housing developed.
 - relies on Centroid Detector Assembly developed for AXAF.
- Initial alignment testbed (OAP1) designed and assembled
 - test reflector mounted and moved using actuators.
- •Revised development approach decouples performance testing from development of mass alignment approach.
 - X-ray test of 1-3 reflector pairs in simple, stiff housing (early-mid 2003) at MSFC stray light facility
 - Deferral of introduction of mass alignment approach (Si alignment bars still baseline)
- Bottom Line: All SXT components are at or near their required precision

Delivery of 1.6 m Ziess Mandrel

Mandrel being cleaned by Zeiss technician

Lifting fixture being attached

Mandrel in lifting fixture

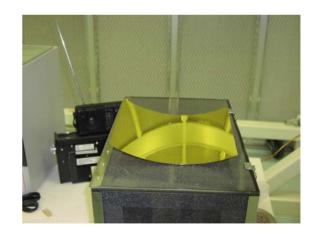


Thermal Forming of Substrates

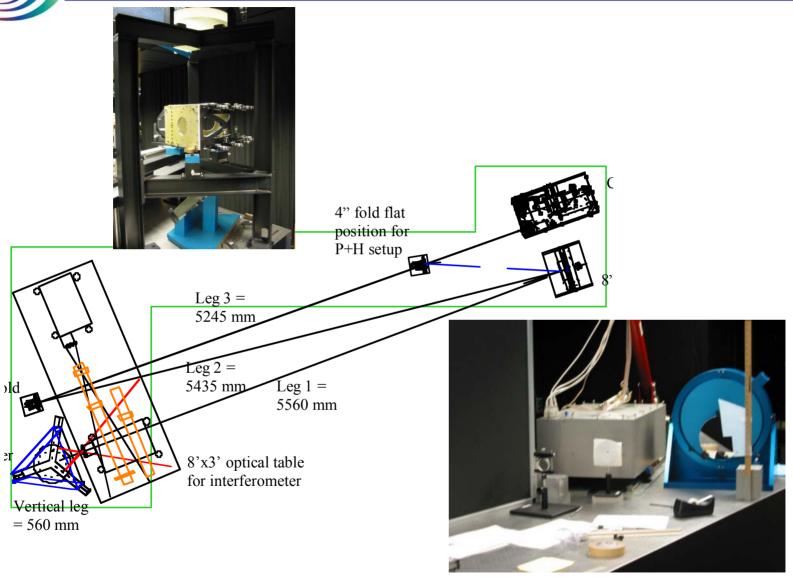
Thermal forming of substrate using 50 cm mandrel in GSFC 1.5 m furnace.

Thermally formed 0.4 mm glass substrate, with 50 cm radius of curvature for SXT EU (with temporary reflecting layer for metrology).

Reflector Replication

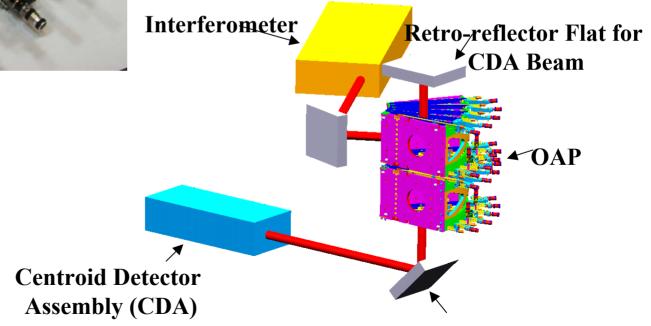

Robotic Spraying of substrate

Removal of finished reflector after curing


Attachment of substrate to mandrel in vacuum

Finished reflector

OAP1 Alignment



Constellation

- Alignment scheme incorporates 5 independent positioners, top and bottom, plus two vertical positioners.
- Interferometer viewing through window in hub provides feedback on figure distortions.
- Centroid Detector Assembly (designed for AXAF mirrors) used to determine focal point and reflector distortions.

Fold Flat Example

SXT Near-Term Plans

- Demonstrate optical performance and alignment techniques using OAP
- Produce 50 cm diameter segments that meet the SXT requirement
- Develop facilities for producing 1.6 m reflectors
 - Replication chamber, deposition chamber
- Buy forming mandrels for 1.6 m reflectors
- Initial X-ray performance verification to take place by end of 2003
- Investigate mass production, alignment and assembly issues